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The penetration of renewable distributed generations (RDGs) such as wind and solar energy into 
conventional power systems provides many technical and environmental benefits. These benefits include 
enhancing power system reliability, providing a clean solution to rapidly increasing load demands, reducing 
power losses, and improving the voltage profile. However, installing these distributed generation (DG) 
units can cause negative effects if their size and location are not properly determined. Therefore, the 
optimal location and size of these distributed generations may be obtained to avoid these negative effects. 
Several conventional and artificial algorithms have been used to find the location and size of RDGs in 
power systems. Particle swarm optimization (PSO) is one of the most important and widely used techniques.  
In this paper, a new variant of particle swarm algorithm with nonlinear time varying acceleration coefficients 
(PSO-NTVAC) is proposed to determine the optimal location and size of multiple DG units for meshed 
and radial networks. The main objective is to minimize the total active power losses of the system, while 
satisfying several operating constraints. The proposed methodology was tested using IEEE 14-bus, 30-
bus, 57-bus, 33-bus, and 69- bus systems with the change in the number of DG units from 1 to 4 DG units.  
The result proves that the proposed PSO-NTVAC is more efficient to solve the optimal multiple DGs 
allocation with minimum power loss and a high convergence rate.

K e y  w o r d s: power loss reduction, improved PSO-NTVAC, meshed and radial networks, optimal 
size, optimal location

Globally, the penetration of renewable distributed 
generations (RDGs) into electric power systems has 
increased in recent years due to the significant development 
of distributed generations (DGs) technologies, limitations 
imposed on conventional power generation, and the rapid 
increase in electricity consumption [1–3]. DGs make 
extensive use of renewable energy sources (RES) like wind 
energy, solar power, biomass, and photovoltaic systems 
[4].

DGs play an important role in the modern power 
system to meet the requirements and satisfaction of the 
end-users while transmitting and distributing the power 
from one point to another. The system efficiency decreases 
due to line losses and variation of voltage level which 
makes consumers suffer from poor power quality, higher 
cost, variation in voltage and insufficient power [3]. The 
installation of DGs units in the electrical power systems 
solves these problems because it has many benefits such 
as improved voltage stability, real power loss reduction, 
reliability, grid strengthening and reduction of Sulfur 
dioxide (SO2), carbon dioxide (CO2) gas emissions. 
Although DG has lots of advantages, the key problem in 
DG placement is the selection of optimal location and size 

of DG units [5, 6]. If DG units are improperly allocated 
and sized, the reverse power flow from larger DG units can 
lead to higher system losses, voltage fluctuations, and an 
increase in costs. Hence, to minimize losses, it is important 
to find the best location and size of DG units [7, 8].

In terms of size, the DGs with ratings between 1 and 
5 kW are known as micro DGs, the DGs with ratings 
between 5 kW and 5 MW are known as small DGs, the 
DGs with ratings between 5–50 MW are known as medium 
DGs, and the DGs ratings in 50–300 MW are large DGs 
[9]. Furthermore, various types of DGs can be classified as 
follows [10, 11]:

Type 1: DG units capable of injecting active power 
only; 

Type 2: DG units capable of injecting reactive power 
only; 

Type 3: DG units capable of injecting both active and 
reactive power; 

Type 4: DG units which injects active power but 
consumes reactive power.

There are many techniques that have been carried out  
to obtain the optimal location and size of DGs in power 
systems, such as Conventional techniques and heuristic 
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methods including dynamic programming, linear 
programming, non-linear programming and other analytical 
methods [2, 12, 13]. These methods need a proper initial 
point to start the algorithm where the convergences of 
these algorithms are completely related to their initial 
point. Some kinds of these algorithms such as linear 
programming are fast but they need some approximation in 
the power system model. Besides, some constraints cannot 
be modeled in these algorithms like reactive power flow of 
transmission lines [14].  

Recently, many modern meta-heuristic techniques have 
been applied to overcome these disadvantages, for example, 
Particle Swarm Optimization (PSO) [15, 16], Genetic 
Algorithms (GA) [17], Artificial Bee Colony (ABC) 
[18], Modified Moth Flame Optimization [19], Whale 
Optimization Algorithm (WOA) [10, 20], Stud Krill Herd 
Algorithm (SKHA) [7], Bacterial Foraging Optimization 
Algorithm (BFOA) [21], Ant Colony Optimization (ACO) 
[22], Differential Evolution (DE) [23], Intelligent Water 
Drops (IWD) [3],  Ant Lion Optimization (ALO) algorithm 
[24]. 

This paper analyzes the impact of the DGs installation on 
the performance of the power systems and their parameters 
such as voltage, active and reactive power losses.  To find 
optimal placement and size of multiple DGs units, an 
improved version of particle swarm optimization (PSO) 
called nonlinear time varying acceleration coefficients 
PSO (PSO-NTVAC) is used. PSO-NTVAC resolves 
the premature convergence problem of original PSO in 
problems with multiple local optimums. The main goal is 
to reduce power losses of radial and meshed networks. 

Problem formulation. 
Objective function. The main objective of determining 

the optimal placement and sizing of DGs is to minimize 
the system power loss subjected to various equality and 
inequality constraints of a distribution network [4]: 

objective Function = min(Ploss),                (1)

where the active power loss Ploss in each branch can be 
calculated as:
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where Rk is the resistance of branch k. The parameter Ik 
represents the current flow through the branch k. Also, m is 
the number of branches in the network.

Equality and Inequality Constraints.  There are two 
types of constraints as following:

Equality Constraints. The power balance equation with 
considering RDGs units in the system can be defined as 
follows:

,

1 1 1

,
DGB BNN N

Gi DG j Di loss
i j i
Q Q Q Q

� � �
� � �� � �

           (3)

,

1 1 1

,
DGB BNN N

Gi DG j Di loss
i j i
Q Q Q Q

� � �
� � �� � �              (4)

where PGi and QGi are active and reactive power generated 
on the bus i from the thermal generators; PDi and QDi are 
active and reactive power demand at the bus i, respectively; 
PDG,j and QDG,j are the active and reactive power generation 
from the DGs units, respectively; NDG is the total available 
number of DG units; NB is the number of power system 
buses.

Inequality Constraints 
a) Voltage Limit Constraints 
The voltage at each bus of the distribution system is 

limited as following:

(5)

where VLi is voltage at load bus i; VLi
min and VLi

max are the 
minimum and maximum a magnitude of voltage at load 
bus i.

b) DG sizing limits
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Particle Swarm Optimization algorithm. The Particle 
Swarm Optimization (PSO) algorithm, originally introduced 
by Kennedy and Eberhart in 1995, is a population-based 
evolutionary computation technique. It is motivated by 
the behavior of organisms such as fishing schooling and 
bird flock. In a PSO system, each particle corresponding 
to the individual of the organism is a candidate solution 
to the problem at hand. The particles of the population fly 
around in a multi-dimensional search space, to find out an 
optimal or sub-optimal solution by competition as well as 
by cooperation among them [25].

PSO is one of the modern heuristic algorithms and has 
a great potential to solve complex optimization problems. 
PSO has several key advantages over other existing 
optimization techniques [26]: 

it is simple and has convergence speed simplicity;
it is a derivative-free algorithm unlike many 

conventional techniques;
PSO is easy to implement in computer simulations 

using basic mathematical and logic operations;
it has the flexibility to be integrated with other 

optimization techniques to form hybrid tools; 
it is less sensitive to the nature of the objective function, 

i.e., convexity or continuity;
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it has less parameters to adjust unlike many other 
competing evolutionary techniques;

it has the ability to escape local minima;
it can handle objective functions with stochastic nature;
it does not require a good initial solution to start its 

iteration process. 
PSO facilitates a better convergence performance 

than some other optimization procedures like genetic 
algorithms, which have computationally expensive 
evolutionary operations such as crossover and mutation.

Original PSO algorithm. PSO is an optimization 
algorithm based on the population. It is initialized with a 
random population, called a swarm, and each individual is 
called a particle. The position of each particle corresponds 
to a candidate solution to the optimization problem at hand 
and is treated as a point in a D-dimensional search space. 
Each particle has a random velocity and flies through the 
solution space to find the optimal global solution. For 
given particle i, its position and velocity are denoted as  
xi = (xi,1, xi,2, ..., xi,D) and vi = (vi,1, vi,2, ..., vi,D) respectively. 
During the flight, the best position for each particle is 
stored in its memory and called the personal best (Pbest);  
Pbesti

k = (xi,1
Pbest, xi,2

Pbest, ..., xi,D
Pbest). The lowest value of all the 

Pbest, determines the global best (Gbest is the best particle 
position) of the swarm; Gbestk = (x1

Gbest, x2
Gbest, ..., xD

Gbest). 
For the next iteration, the modified velocity and position of 
each particle can be calculated as follows [27]: 
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where k is the index of iterations; vi
k is the velocity of 

particle i at current iteration k; xi
k is the position of particle 

i at current iteration k; R1 & R2 are uniform random value 
in the range between [0, 1]; Pbesti

k best position of particle 
i until current iteration k; Gbestk the lowest value of all the 
Pbest until current iteration k; c1 and c2 are acceleration 
coefficients, which are set to 2.0 commonly.

c1 is called the cognitive component and it encourages 
the particles to move toward their own best positions found 
so far. c2 is called the social component and it represents 
the collaborative effect of the particles in finding the global 
optimal solution. The social component always pulls the 
particles toward the global best particle found so far.

Time varying inertia weight. Significant improvement 
in the performance of the algorithm was obtained while 
a factor called inertia weight was included into the 
fundamental PSO equation. This inertia weight decreases 
linearly with respect to time. Generally, for the initial stages 
of the search process large inertia weight to enhance the 
global exploration (searching new area) is recommended 
while for the last stages the inertia weight is reduced for 
local exploration (fine tuning the current search area) [28]. 
The PSO equation incorporating (w) is given as follows:
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where wmax and wmin are the initial and final values of the 
inertia weight. The typical values of w varies from 0,9 to 
0,4. kmax and k are the maximum number of iteration and 
the current iteration number. 

In this paper nonlinear time varying inertia weight 
(NTVIW) has been used so that a decrement in the initial 
stages is very slow and with iterations it decrements at a 
faster rate; this makes exploit more search space initially 
and later to follow the leader particles which are selected 
based on the dominance-based sorting technique in the 
objective space [29]. The NTVIW can be expressed as 
follows:
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Nonlinear Time varying accelerating coefficients 
(NTVAC). The acceleration coefficients (the cognitive 
component c1 and the social component c2) are fixed 
values in classic PSO. Studies normally keep each of the 
acceleration coefficients at 2. The proper control of these two 
components is very important to find the optimum solution 
accurately and efficiently [27]. However, a relatively 
high value of the cognitive component, compared with 
the social component, will result in excessive wandering 
of individuals through the search space. In contrast, a 
relatively high value of the social component may lead 
particles to rush prematurely toward a local optimum [27]. 

In population-based optimization methods, the policy 
is to encourage the individuals to roam through the entire 
search space during the initial part of the search without 
clustering around local optima. During the latter stages, 
however, convergence towards the global optima should 
be encouraged to find the optimum solution efficiently  
[27, 30]. In Time varying accelerating coefficients (TVAC), 
it is achieved by changing the acceleration coefficients and 
with time in such a manner that the cognitive component 
is reduced while the social component is increased as the 
search proceeds. A large cognitive component and small 
social component at the beginning allow particles to 
move around the search space instead of moving towards 
the population best prematurely. During the latter stage 
in optimization a small cognitive component and a large 
social component allow the particles to converge to the 
global optima [30]. The acceleration coefficients are 
updated using the following equations:
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where c1,i , c1,f , c2,i, and c2, f are initial and final values of 
cognitive and social acceleration factors, respectively.
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In this paper, a new variant called nonlinear time 
varying acceleration coefficients (NTVAC) are added in 
the PSO method as a parameter update mechanism that has 
powerful capability of tuning the cognitive component c1 
and social component c2. The NTVAC can be expressed as 
follows [31]:
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Simulation and results. The proposed PSO-NTVAC 
method was created in the MATLAB environment (R2018a 
version), and the simulations were performed on Intel® 
Core™ i7-2670QM CPU @ 2.20GHz, with an 8.00 GB 
RAM setup and a 64-bit operating system.

Test System Cases.  IEEE 14-bus, IEEE 30-bus, IEEE 
57-bus, IEEE 33-bus and IEEE 69-node systems were 
selected to evaluate the location and size of distributed 
generation using PSO-NTVAC. General information about 
these systems is presented in Table 1. The system line and 
bus data as well as the system constraints are found in 
reference [1, 7, 32].

The results of IEEE 14-Bus system. Fig. 1 shows the 
IEEE 14-bus system used to evaluate location and size of 
DGs and reduce power losses in meshed network. The total 

load demand of this system is 259 MW and 73,5 Mvar, 
with the active and reactive power loss as 13,393 MW and 
54,54 Mvar respectively.

The minimization of system losses is considered an 
objective function and is achieved by introducing DGs in 
the system. The optimal location and size of the DGs were 
found by the PSO-NTVAC and the corresponding results 
are listed in Table 2. The DG units can deliver active power 
and reactive power where the DG units are represented 
as PQ model at power factor 0,95. The number of DG’s 
is varied from one unit to four units. The Ploss is reduced 
by 72,19 % with one DGs and by 77,15% with four DG 
units added to the system. Also, the Qloss is reduced from  
73,5 Mvar to 19,94 Mvar with one DG unit while with  
4 DG units the Qloss is reduced to 14,30 Mvar. Fig. 2 shows the 
effect of the number of DG units on Ploss minimization. The 
convergence characteristics of the PSO-NTVAC algorithm 
for DGs integration in system are presented in Fig. 3.

The results of IEEE 30-Bus system. The single line 
diagram of 30-bus system is shown in Fig. 4. This system's 
total load demand is 283,4 MW and 126,2 Mvar, respectively, 
with active and reactive power losses of 5,786 MW  
and 29,76 Mvar, respectively. Where the initial value of 
voltage deviation (VD) is 1,1484 pu. This system is a part of 
the American Electric Power Service Corporation network. 
The DG units can deliver active power and reactive power 
where the DG units are represented as PQ model at power 

Table 1
Information of IEEE test system cases

Specifications IEEE 14 meshed IEEE 30 meshed IEEE 57 meshed IEEE 33 Radial IEEE 69 Radial

Number of buses 14 30 57 33 69

Lines or branches 20 41 80 37 68

Generators/Feeders 5 6 7 1 1

Transformers 3 4 17 0 0

Loads bus (PQ) 9 24 50 32 68

Shunt capacitors 1 2 3 0 0

Slack bus 1 1 1 1 1

PV buses 4 5 6 0 0

                         Fig. 1. Single line diagram of IEEE 14-bus                            Fig. 2. Comparison of Ploss with DGs for 14 bus system
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factor 0,95. The number of DG’s is varied from one unit 
to four units. Table 3 shows the optimal location, size, 
and the real, reactive power losses and voltage deviation 
after the placement of many DGs in the network. From 
this table, it can be observed that the Ploss decreased from 
the Ploss without any DG unit to 45,97%, 56,52%, 64,88%, 
and 71,5% by integrating 1 DG, 2 DG, 3 DG, and 4 DG, 
respectively. In addition, when one DG unit was added 
to the system, the VD was reduced from 1,1484 pu to 
1,0669 pu, while when 4 DG units were added, the VD 
was reduced to 0,589 pu. Fig. 5 shows the minimization 

in Ploss with a change in the number of DG units added to 
the grid. Fig. 6 illustrates the convergence characteristics 
of the PSO-NTVAC for DGs integration in the grid. Fig. 7 
illustrates the voltage profile enhancement in relation to the 
number of DG units.

The results of IEEE 57-Bus system. This system has 
an overall load demand of 1250,8 MW and 336,4 Mvar 
respectively, with the active and reactive power loss as 
27,864 MW and 121,67 Mvar, respectively. While the 
initial VD is 1,2336 pu. The single line diagram of this 
system is shown in Fig. 8. The effect of the number of DG 

Fig. 3. Convergence characteristics of PSO-NTVAC for DGs integration in IEEE 14 bus

Table 2 
The results after applying multiple DGs for IEEE 14 bus

Item 1 DG 2 DG 3 DG 4 DG

DG location 4 4 14 4 5 14 4 5 13 14

DG size, MW 181,3 161,42 21,18 125,25 49,82 19,13 123,61 41,03 13,74 15,88

Qloss, Mvar 19,94 15,85 15,81 14,30

Ploss, MW 3,725 3,357 3,151 3,06

Ploss reduction, % 72,19 74,94 76,47 77,15

Qloss reduction, % 63,44 70,94 71,01 73,78

                      Fig. 4. Single line diagram of IEEE 30-bus                                       Fig. 5. Comparison of Ploss with DGs for IEEE 30 bus
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units in Ploss minimization is shown in Fig. 9. The optimal 
locations, sizes, and active power losses are given in  
Table 4. This table shows that by integrating 1 DG, 2 DG,  
3 DG, and 4 DG, the Ploss decreased by 42,92%, 50,37%,  
55%, and 57,91%, respectively, from the Ploss without 
any DG unit. Also, the percentage reduction in Qloss is  
39,85%, 49,2%, 52,98%, 54,4%, respectively, from the 
Qloss without any DG unit.

The results of IEEE 33-Bus system. The single line 
diagram of this system is shown in Fig. 10. This system has 
total load of 3715 kW and 2300 kvar, the total generation 
3917,677 kW and 2435,14 kvar, with the active and reactive 

power loss as 202,677 kW and 135,141 kvar, respectively. 
While the initial VD is 1,7009 pu.  

Case 1: DGs is capable of injecting active power only
In this case, the DG units are only capable of supplying 

the network with active power only, i.e., operating at the 
unity power factor. Table 5 shows a comparison of the 
results of incorporating multiple DGs into this network. 
Optimally placing a single DG in the network contributes 
48,701% reduction in Ploss and reduces the VD from  
1,7009 pu to 0,8296 pu. When Placing 2 DG at the same 
time reduces Ploss by 57,61% and reduces the VD to  
0,6471 pu, while placing 3 DGs at the same time reduces 

Table 3 
The results of applying multiple DGs to IEEE 30 bus

Item 1 DG 2 DG 3 DG 4 DG

DG location 6 7 24 7 21 30 7 19 24 30

DG size, MW 94 58,89 27,09 46,79 34,01 13,22 44,92 18,89 20,49 12,06

Qloss, Mvar 19,89 14,604 11,954 10,8117

Ploss, MW 3,126 2,516 2,032 1,649

Ploss reduction, % 45,97 56,52 64,88 71,5

Qloss reduction, % 33,17 50,94 59,85 63,67

VD, pu 1,0669 0,8701 0,7045 0,5890

Fig. 6. Convergence characteristics of PSO-NTVAC for DGs integration 
in IEEE 30 bus

Fig. 7. Voltage profile with DGs for IEEE 30 bus

                                Fig. 8. Single line diagram of IEEE 57-bus                    Fig. 9. Comparison of Ploss with DGs for IEEE 57-bus
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power loss by 64,74% and reduces the VD to 0,5873 
pu and Placing 4 DG at the same time reduces Ploss by  
67,47% and reduces the VD to 0,5356 pu. Fig. 11 describes 
the reduction in Ploss as the number of DG units added to 
the network is increased. Fig. 12 shows the convergence 
characteristics of PSO-NTVAC with the integration of 
DG into the network. Fig. 13 shows the improvement in 
the voltage profile compared to the number of DG units. 
From these figures, it is clear that the voltage profiles are 
improved after the integration of DG units. 

Case 2: DGs is capable of injecting active and reactive 
power.

In this case the DG units can provide both active 
and reactive power to the network. Fig. 14 describes the 
reduction in Ploss as the number of DG units added to the 
network is increased. Fig. 15 shows the improvement in the 

voltage profile compared to the number of DG units. The 
optimal location of DGs, DGs size, Ploss, and VD are shown 
in Tables 6. From this table, it can be observed that the 
Ploss decreased to 69,72%, 85,94%, 94,26%, and 96,83% by 
integrating 1 DG, 2 DG, 3 DG and 4 DG, respectively. In 
addition, when one DG unit was added to the system, the 
VD was reduced from 1.7009 pu to 0,4777 pu, while when 
4 DG units were added, the VD was reduced to 0,0579 pu.

The results of IEEE 69-Bus system. This is a large-
scale radial distribution system with 69 buses and 68 
branches. The single line diagram of this system is shown 
in Fig.16. The total load of 3802,1 kW and 2694,7 kvar 
and the total generation 4027,1 kW and 2796,865 kvar, 
with the active and reactive power loss as 225 kW and  
102,1648 kvar, respectively. The VD without the integration 
of the DGs in the network is 1,8369 pu.

Table 4 
The results of integrating multiple DGs to the IEEE 57-bus

Item 1 DG 2 DG 3 DG 4 DG

DG location 13 13 38 13 16 38 13 16 38 53

DG size, MW 261,08 190,08 88,07 146,52 86,24 87,67 131,13 83,79 86,39 22,04

Qloss, Mvar 73,18 61,82 57,2 55,49

Ploss, MW 15,905 13,83 12,54 11,73

Ploss reduction, % 42,92 50,37 55 57,91

Qloss reduction, % 39,85 49,2 52,98 54,4

VD, pu 1,1493 1,1207 1,12 1,0975

Table 5 
Comparison of results for incorporating multiple DGs units into an IEEE 33-bus for Case 1

Item 1 DG 2 DG 3 DG 4 DG

DG location 6 13 30 14 24 30 7 14 24 31

DG size, kW 2575,3 846,4 1158,7 754 1099,4 1071,4 916,2 585,3 980,9 708,5

DG size, kvar 74,79 58,55 49,39 45,39

Ploss, kW 103,97 85,91 71,46 65,94

Ploss reduction, % 48,7 57,61 64,74 67,47

Qloss reduction, % 23,1 56,6 63,4 66,4

VD, pu 0,8296 0,6471 0,5873 0,5356

Fig. 10. Single line diagram of IEEE 33-bus Fig. 11. Comparison of decreased Ploss with an increased number of 
DG units for case 1
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Case 3: DGs is capable of injecting active power only
In this case, the DGs units can only provide active power 

to the network, i.e., operating at the unity power factor. 
Table 7 shows a comparison of the results of incorporating 
multiple DGs into this network. Optimally placing a  
1 DG in the network contributes 63,01% reduction in Ploss 
and reduces the VD from 1,8369 pu to 0,8724 pu. When 
Placing 2 DG at the same time reduces Ploss by 68,14% 
and reduces the VD to 0,4997 pu, while placing 3 DGs 
at the same time reduces Ploss by 69,14 % and reduces 

Fig. 12. Convergence characteristics of PSO-NTVAC for DGs integration 
in IEEE 33-bus for case 1

Fig. 13. Voltage profile with DGs for IEEE 33-bus for case 1

Fig. 14. Comparison of Ploss with DGs for 33-bus system for case 2 Fig. 15. Voltage profile with DGs for IEEE 33-bus for case 2

Table 6 
 Comparison of results for incorporating multiple dgs units into an IEEE 33 bus for case 2

Item 1 DG 2 DG 3 DG 4 DG

DG location 6 13 30 14 24 30 7 14 24 30

DG size, kW 2544,7 839,4 1140,4 747,5 1078,3 1048,6 795,1 582,6 966,1 787,2

DG size, kvar 1750,2 395,6 1065,7 350,1 521,3 1021,0 380,4 271,0 469,5 893,9

Qloss, kvar 48,3671 20,401 9,692 5,770

Ploss, kW 61,3634 28,4918 11,6299 6,4282

Ploss reduction, % 69,72 85,94 94,26 96,83

Qloss reduction, % 64,2 84,9 92,83 95,73

VD, pu 0,4777 0,1886 0,1205 0,0579

the VD to 0,4493 pu and Placing 4 DGs at the same time 
reduces Ploss by 69б81% and reduces the VD to 0,4448 pu.  
Fig. 17 describes the reduction in Ploss as the number of 
DG units added to the network is increased. Fig. 18 shows 
the improvement in the voltage profile compared to the 
number of DG units. From this figure, it is clear that the 
voltage profiles are improved after the integration of DG 
units. 

Case 4: DG is capable of injecting active and reactive 
power to 69 bus system.
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Table 7
Comparison of results for incorporating multiple DGs units into an IEEE 69 bus for case 3

Item 1 DG 2 DG 3 DG 4 DG

DG location 61 17 61 11 18 61 11 18 50 61

DG size, kW 1872,7 531,5 1781,5 526,8 380,4 1719,0 526,0 380,4 718,5 1718,8

Qloss, kvar 40,53 35,94 34,96 31,27

Ploss, kW 83,22 71,68 69,43 67,92

Ploss reduction, % 63,01 68,14 69,14 69,81

Qloss reduction, % 60,32 64,82 65,78 69,39

VD, pu 0,8724 0,4997 0,4493 0,4448

                    Fig. 16. Single line diagram of IEEE 69-bus                                   Fig. 17. Comparison of Ploss  with DGs for IEEE 69 bus for case 3

Fig. 18. Voltage profile with DGs for IEEE 69-bus for case 3

In this case, the DG units can provide both active and 
reactive power to the network. Fig. 19 depicts the reduction 
in Ploss as the number of DG units added to the network is 
increased. Fig. 20 shows the improvement in the voltage 
profile compared to the number of DG units. The optimal 
location of DGs, DGs size, Ploss, Qloss, and VD are shown 
in Table 8. From this table, it can be observed that the 
Ploss decreased to 89,7%, 96,79%, 98,1%, and 99,1% by 

integrating 1 DG, 2 DG, 3 DG, and 4 DG, respectively. In 
addition, when 1 DG unit was added to the system, the VD 
was reduced from 1,8369 pu to 0,5868 pu, while when 4 
DG units were added, the VD was reduced to 0,0518 pu.

Conclusion. In this paper an improved version of 
particle swarm optimization (PSO) known as nonlinear 
time-varying acceleration coefficients PSO (PSO-NTVAC) 
is used to find the optimal placement and size of single 
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and multiple DG units based on renewable energy source 
in power systems. Also, the impact of DGs installation 
on power system performance and parameters such as 
voltage, active and reactive power loss is investigated. 
The main objective of installing DG units is to reduce 
the power losses of the radial and meshed networks. The 
proposed technique is implemented on five different IEEE 
standard bus systems which are IEEE 14 bus, 30 bus, 57 
bus, 33 bus, and 69 bus. The results show the applicability 
of this technique in various network systems. Also, the 
results show clearly a significant reduction in an active and 
reactive power loss of the system and the voltage profile 
improvement if the optimum bus and value of RDGs are 
known proving the advantages of RDGs penetration into 
the system.

The researcher [Mamdouh K. Ahmed] is funded by a 
scholarship [Ph.D.] under the Joint (Executive Program 
between the Arab Republic of Egypt and the Russian 
Federation).
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го, Санкт-Петербург, Россия.

Проникновение в энергосистемы возобновляемых распределенных источников, использующих, 
например, энергию ветра и(или) солнца, обещает множество технических и экологических преиму-
ществ. К ним относятся повышение надежности энергосистемы, обеспечение растущих требова-
ний к экологичности, снижение потерь мощности и улучшение профиля напряжения. Однако уста-
новка источников распределенной генерации может привести и к негативным последствиям, если 
их мощность и расположение не определены должным образом. Поэтому необходимо развитие ме-
тодов поиска оптимальных расположения и мощности энергоустановок распределенной генерации, 
минимизирующих возможные негативные последствия. Для определения местоположения и мощ-
ности источников распределенной генерации в энергосистемах используются как традиционные 
алгоритмы (линейное программирование, градиентный метод), так и современные эвристические. 
Метод роя частиц является одним из наиболее эффективных и широко используемых. Предлагается 
новый вариант алгоритма роя частиц с нелинейными изменяющимися во времени коэффициентами 
ускорения (PSO-NTVAC) для решения задачи определения оптимального местоположения и мощно-
сти нескольких энергоустановок для сетчатых и радиальных сетей. Основная цель рассматривае-
мой задачи оптимизации состоит в минимизации общих потерь активной мощности системы при 
удовлетворении всех эксплуатационных ограничений. Предложенная методология апробирована с 
использованием тестовых схем IEEE, содержащих 14, 30, 57, 33 и 69 шин, при количестве энергоу-
становок, изменяющемся от 1 до 4. Результат доказывает более высокую в сравнении с аналогами 
эффективность предложенной модификации PSO-NTVAC для решения задач оптимального разме-
щения нескольких энергоустановок распределенной генерации и выбора их мощности с целью мини-
мизации потерь мощности в энергосистеме.

К л ю ч е в ы е  с л о в а: снижение потерь мощности, улучшенная PSO-NTVAC, сетчатые и ра-
диальные сети, оптимальное размещение
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