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The penetration of renewable distributed generations (RDGs) such as wind and solar energy into
conventional power systems provides many technical and environmental benefits. These benefits include
enhancing power system reliability, providing a clean solution to rapidly increasing load demands, reducing
power losses, and improving the voltage profile. However, installing these distributed generation (DG)
units can cause negative effects if their size and location are not properly determined. Therefore, the
optimal location and size of these distributed generations may be obtained to avoid these negative effects.
Several conventional and artificial algorithms have been used to find the location and size of RDGs in
power systems. Particle swarm optimization (PSO) is one of the most important and widely used techniques.
In this paper, a new variant of particle swarm algorithm with nonlinear time varying acceleration coefficients
(PSO-NTVAC) is proposed to determine the optimal location and size of multiple DG units for meshed
and radial networks. The main objective is to minimize the total active power losses of the system, while
satisfying several operating constraints. The proposed methodology was tested using IEEE 14-bus, 30-
bus, 57-bus, 33-bus, and 69- bus systems with the change in the number of DG units from 1 to 4 DG units.
The result proves that the proposed PSO-NTVAC is more efficient to solve the optimal multiple DGs
allocation with minimum power loss and a high convergence rate.
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Globally, the penetration of renewable distributed
generations (RDGs) into electric power systems has
increased in recent years due to the significant development
of distributed generations (DGs) technologies, limitations
imposed on conventional power generation, and the rapid
increase in electricity consumption [1-3]. DGs make
extensive use of renewable energy sources (RES) like wind
energy, solar power, biomass, and photovoltaic systems
[4].

DGs play an important role in the modern power
system to meet the requirements and satisfaction of the
end-users while transmitting and distributing the power
from one point to another. The system efficiency decreases
due to line losses and variation of voltage level which
makes consumers suffer from poor power quality, higher
cost, variation in voltage and insufficient power [3]. The
installation of DGs units in the electrical power systems
solves these problems because it has many benefits such
as improved voltage stability, real power loss reduction,
reliability, grid strengthening and reduction of Sulfur
dioxide (SO,), carbon dioxide (CO,) gas emissions.
Although DG has lots of advantages, the key problem in
DG placement is the selection of optimal location and size

of DG units [5, 6]. If DG units are improperly allocated
and sized, the reverse power flow from larger DG units can
lead to higher system losses, voltage fluctuations, and an
increase in costs. Hence, to minimize losses, it is important
to find the best location and size of DG units [7, 8].

In terms of size, the DGs with ratings between 1 and
5 kW are known as micro DGs, the DGs with ratings
between 5 kW and 5 MW are known as small DGs, the
DGs with ratings between 5-50 MW are known as medium
DGs, and the DGs ratings in 50-300 MW are large DGs
[9]. Furthermore, various types of DGs can be classified as
follows [10, 11]:

Type 1: DG units capable of injecting active power
only;

Type 2: DG units capable of injecting reactive power
only;

Type 3: DG units capable of injecting both active and
reactive power;

Type 4: DG units which injects active power but
consumes reactive power.

There are many techniques that have been carried out
to obtain the optimal location and size of DGs in power
systems, such as Conventional techniques and heuristic
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methods including dynamic programming, linear
programming, non-linear programming and other analytical
methods [2, 12, 13]. These methods need a proper initial
point to start the algorithm where the convergences of
these algorithms are completely related to their initial
point. Some kinds of these algorithms such as linear
programming are fast but they need some approximation in
the power system model. Besides, some constraints cannot
be modeled in these algorithms like reactive power flow of
transmission lines [14].

Recently, many modern meta-heuristic techniques have
been applied to overcome these disadvantages, for example,
Particle Swarm Optimization (PSO) [15, 16], Genetic
Algorithms (GA) [17], Artificial Bee Colony (ABC)
[18], Modified Moth Flame Optimization [19], Whale
Optimization Algorithm (WOA) [10, 20], Stud Krill Herd
Algorithm (SKHA) [7], Bacterial Foraging Optimization
Algorithm (BFOA) [21], Ant Colony Optimization (ACO)
[22], Differential Evolution (DE) [23], Intelligent Water
Drops (IWD) [3], Ant Lion Optimization (ALO) algorithm
[24].

This paper analyzes the impact of the DGs installation on
the performance of the power systems and their parameters
such as voltage, active and reactive power losses. To find
optimal placement and size of multiple DGs units, an
improved version of particle swarm optimization (PSO)
called nonlinear time varying acceleration coefficients
PSO (PSO-NTVAC) is used. PSO-NTVAC resolves
the premature convergence problem of original PSO in
problems with multiple local optimums. The main goal is
to reduce power losses of radial and meshed networks.

Problem formulation.

Objective function. The main objective of determining
the optimal placement and sizing of DGs is to minimize
the system power loss subjected to various equality and
inequality constraints of a distribution network [4]:

objective Function = min(P, ), ()

where the active power loss
calculated as:

P, . in each branch can be

m
Ploss = ZRk]lg ’ (2)
k=1
where R, is the resistance of branch k. The parameter /,
represents the current flow through the branch . Also, m is
the number of branches in the network.
Equality and Inequality Constraints. There are two
types of constraints as following:
Equality Constraints. The power balance equation with
considering RDGs units in the system can be defined as
follows:

Npg
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where P and Q. are active and reactive power generated
on the bus i from the thermal generators; P, and Q, are
active and reactive power demand at the bus i, respectively;
P and O, . S are the active and reactive power generation

from the DGs units, respectively; N, . is the total available
number of DG units; N, is the number of power system
buses.

Inequality Constraints

a) Voltage Limit Constraints

The voltage at each bus of the distribution system is
limited as following:

)

where ¥, is voltage at load bus i; V"™ and V7 are the
minimum and maximum a magnitude of voltage at load
bus i.

b) DG sizing limits
Npg
z PDGI < Z lass?
(6)
Npg Np
Z QDG Z i+ Qloss H (7)
P& < Pog < Poc. (8)

Particle Swarm Optimization algorithm. The Particle
Swarm Optimization (PSO)algorithm, originally introduced
by Kennedy and Eberhart in 1995, is a population-based
evolutionary computation technique. It is motivated by
the behavior of organisms such as fishing schooling and
bird flock. In a PSO system, each particle corresponding
to the individual of the organism is a candidate solution
to the problem at hand. The particles of the population fly
around in a multi-dimensional search space, to find out an
optimal or sub-optimal solution by competition as well as
by cooperation among them [25].

PSO is one of the modern heuristic algorithms and has
a great potential to solve complex optimization problems.
PSO has several key advantages over other existing
optimization techniques [26]:

it is simple and has convergence speed simplicity;

it is a derivative-free algorithm unlike many
conventional techniques;

PSO is easy to implement in computer simulations
using basic mathematical and logic operations;

it has the flexibility to be integrated with other
optimization techniques to form hybrid tools;

it is less sensitive to the nature of the objective function,
i.e., convexity or continuity;
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it has less parameters to adjust unlike many other
competing evolutionary techniques;

it has the ability to escape local minima;

it can handle objective functions with stochastic nature;

it does not require a good initial solution to start its
iteration process.

PSO facilitates a better convergence performance
than some other optimization procedures like genetic
algorithms, which have computationally expensive
evolutionary operations such as crossover and mutation.

Original PSO algorithm. PSO is an optimization
algorithm based on the population. It is initialized with a
random population, called a swarm, and each individual is
called a particle. The position of each particle corresponds
to a candidate solution to the optimization problem at hand
and is treated as a point in a D-dimensional search space.
Each particle has a random velocity and flies through the
solution space to find the optimal global solution. For
given particle i, its position and velocity are denoted as
X, = (X, X, s X p) @nd v, = (v, v, o, v, ) Tespectively.
During the flight, the best position for each particle is
stored in its memory and called the personal best (Pbest);
Pbest} = (xf best, xf P s xl.f;ge”). The lowest value of all the
Pbest, determines the global best (Gbest is the best particle
position) of the swarm; Gbest* = (x, %, x ', ..., x5%").
For the next iteration, the modified velocity and position of
each particle can be calculated as follows [27]:

VIR =V 4 ¢ R (Pbest’ —x)+ ¢, R, (Ghest* —xF); (9)

xikH =xl-k+vik+l, (10)
where k is the index of iterations; v¥ is the velocity of
particle 7 at current iteration k; x{ is the position of particle
i at current iteration k; R, & R, are uniform random value
in the range between [0, 1]; Pbest best position of particle
i until current iteration k; Gbest* the lowest value of all the
Pbest until current iteration k; ¢, and c, are acceleration
coefficients, which are set to 2.0 commonly.

c, is called the cognitive component and it encourages
the particles to move toward their own best positions found
so far. ¢, is called the social component and it represents
the collaborative effect of the particles in finding the global
optimal solution. The social component always pulls the
particles toward the global best particle found so far.

Time varying inertia weight. Significant improvement
in the performance of the algorithm was obtained while
a factor called inertia weight was included into the
fundamental PSO equation. This inertia weight decreases
linearly with respect to time. Generally, for the initial stages
of the search process large inertia weight to enhance the
global exploration (searching new area) is recommended
while for the last stages the inertia weight is reduced for
local exploration (fine tuning the current search area) [28].
The PSO equation incorporating (w) is given as follows:

VB =y VE e R (Phest! — xF)+ ¢, R, (Ghest* —xF); (11)
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where w_and w_. are the initial and final values of the
inertia weight. The typical values of w varies from 0,9 to
0,4. k_ and k are the maximum number of iteration and
the current iteration number.

In this paper nonlinear time varying inertia weight
(NTVIW) has been used so that a decrement in the initial
stages is very slow and with iterations it decrements at a
faster rate; this makes exploit more search space initially
and later to follow the leader particles which are selected
based on the dominance-based sorting technique in the
objective space [29]. The NTVIW can be expressed as
follows:

r 2
w= (Wmin - Wmax) (k_j + Wiax - (13)
max

Nonlinear Time varying accelerating coefficients
(NTVAC). The acceleration coefficients (the cognitive
component ¢, and the social component c)) are fixed
values in classic PSO. Studies normally keep each of the
acceleration coefficients at 2. The proper control of these two
components is very important to find the optimum solution
accurately and efficiently [27]. However, a relatively
high value of the cognitive component, compared with
the social component, will result in excessive wandering
of individuals through the search space. In contrast, a
relatively high value of the social component may lead
particles to rush prematurely toward a local optimum [27].

In population-based optimization methods, the policy
is to encourage the individuals to roam through the entire
search space during the initial part of the search without
clustering around local optima. During the latter stages,
however, convergence towards the global optima should
be encouraged to find the optimum solution efficiently
[27,30]. In Time varying accelerating coefficients (TVAC),
it is achieved by changing the acceleration coefficients and
with time in such a manner that the cognitive component
is reduced while the social component is increased as the
search proceeds. A large cognitive component and small
social component at the beginning allow particles to
move around the search space instead of moving towards
the population best prematurely. During the latter stage
in optimization a small cognitive component and a large
social component allow the particles to converge to the
global optima [30]. The acceleration coefficients are
updated using the following equations:

k
= (Cl,f ¢y ) —+a, (14)
kmax
k
¢y =(cyp =€) T T (15)
max
where ¢, c, » Cop and c, ,are initial and final values of

cognitive and social acceleration factors, respectively.
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In this paper, a new variant called nonlinear time
varying acceleration coefficients (NTVAC) are added in
the PSO method as a parameter update mechanism that has
powerful capability of tuning the cognitive component ¢,
and social component c,. The NTVAC can be expressed as
follows [31]:

2
k

¢ = —(ch ‘Cu) [—k ) +ay s
max

2
= (I—Lj +a { k j (17)
' kmax ' kmax

Simulation and results. The proposed PSO-NTVAC
method was created in the MATLAB environment (R2018a
version), and the simulations were performed on Intel®
Core™ i7-2670QM CPU @ 2.20GHz, with an 8.00 GB
RAM setup and a 64-bit operating system.

Test System Cases. 1EEE 14-bus, IEEE 30-bus, IEEE
57-bus, IEEE 33-bus and IEEE 69-node systems were
selected to evaluate the location and size of distributed
generation using PSO-NTVAC. General information about
these systems is presented in Table 1. The system line and
bus data as well as the system constraints are found in
reference [1, 7, 32].

The results of IEEE 14-Bus system. Fig. 1 shows the
IEEE 14-bus system used to evaluate location and size of
DGs and reduce power losses in meshed network. The total

(16)

load demand of this system is 259 MW and 73,5 Mvar,
with the active and reactive power loss as 13,393 MW and
54,54 Mvar respectively.

The minimization of system losses is considered an
objective function and is achieved by introducing DGs in
the system. The optimal location and size of the DGs were
found by the PSO-NTVAC and the corresponding results
are listed in Table 2. The DG units can deliver active power
and reactive power where the DG units are represented
as PQ model at power factor 0,95. The number of DG’s
is varied from one unit to four units. The P, is reduced
by 72,19 % with one DGs and by 77,15% with four DG
units added to the system. Also, the Q, is reduced from
73,5 Mvar to 19,94 Mvar with one DG unit while with
4 DG units the O, isreduced to 14,30 Mvar. Fig. 2 shows the
effect of the number of DG units on P, minimization. The
convergence characteristics of the PSO-NTVAC algorithm
for DGs integration in system are presented in Fig. 3.

The results of IEEE 30-Bus system. The single line
diagram of 30-bus system is shown in Fig. 4. This system's
totalloaddemandis283,4 MW and 126,2 Mvar, respectively,
with active and reactive power losses of 5,786 MW
and 29,76 Mvar, respectively. Where the initial value of
voltage deviation (VD) is 1,1484 pu. This system is a part of
the American Electric Power Service Corporation network.
The DG units can deliver active power and reactive power
where the DG units are represented as PQ model at power

Table 1
Information of IEEE test system cases
Specifications IEEE 14 meshed IEEE 30 meshed IEEE 57 meshed IEEE 33 Radial IEEE 69 Radial
Number of buses 14 30 57 33 69
Lines or branches 20 41 80 37 68
Generators/Feeders 5 6 7 1 1
Transformers 3 4 17 0 0
Loads bus (PQ) 9 24 50 32 68
Shunt capacitors 1 2 3 0 0
Slack bus 1 1 1 1 1
PV buses 4 5 6 0 0
T W 15 . . . . -
(6) cenerators 2
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Fig. 1. Single line diagram of IEEE 14-bus

Base case 1 DG unit 2 DG units 3 DG units 4 DG units

Fig. 2. Comparison of P, with DGs for 14 bus system
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factor 0,95. The number of DG’s is varied from one unit
to four units. Table 3 shows the optimal location, size,
and the real, reactive power losses and voltage deviation
after the placement of many DGs in the network. From
this table, it can be observed that the P, decreased from
the P, without any DG unit to 45,97%, 56,52%, 64,88%,
and 71,5% by integrating 1 DG, 2 DG, 3 DG, and 4 DG,
respectively. In addition, when one DG unit was added
to the system, the VD was reduced from 1,1484 pu to
1,0669 pu, while when 4 DG units were added, the VD
was reduced to 0,589 pu. Fig. 5 shows the minimization

in P, with a change in the number of DG units added to
the grid. Fig. 6 illustrates the convergence characteristics
of the PSO-NTVAC for DGs integration in the grid. Fig. 7
illustrates the voltage profile enhancement in relation to the
number of DG units.

The results of IEEE 57-Bus system. This system has
an overall load demand of 1250,8 MW and 336,4 Mvar
respectively, with the active and reactive power loss as
27,864 MW and 121,67 Mvar, respectively. While the
initial VD is 1,2336 pu. The single line diagram of this
system is shown in Fig. 8. The effect of the number of DG

4,0

’ |—1 DG unit — 2DG units — 3 DG units —4 DG units|

Power loss (MW)

0 50

100 150 200
Iteration

Fig. 3. Convergence characteristics of PSO-NTVAC for DGs integration in IEEE 14 bus

Table 2
The results after applying multiple DGs for IEEE 14 bus
Item 1DG 2DG 3DG 4DG
DG location 4 4 14 5 14 4 5 13 14
DG size, MW 181,3 161,42 21,18 125,25 49,82 19,13 123,61 41,03 13,74 15,88
0,.» Mvar 19,94 15,85 15,81 14,30
P, MW 3,725 3,357 3,151 3,06
P, reduction, % 72,19 74,94 76,47 77,15
0, reduction, % 63,44 70,94 71,01 73,78
THREE WINDING TRANSFORMER EQUIVALENTS
HANCOCK ROANOKE “ 6 T T T T T
13 '\
# Ia
5

Power loss (MW)

(© GENERATORS
© SYNCHRONOUS
CONDENSORS

Fig. 4. Single line diagram of IEEE 30-bus

Base case 1 DG unit 2 DG units 3 DG units 4 DG units

Fig. 5. Comparison of P, ~with DGs for IEEE 30 bus

loss
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units in P, minimization is shown in Fig. 9. The optimal
locations, sizes, and active power losses are given in
Table 4. This table shows that by integrating 1 DG, 2 DG,
3 DG, and 4 DG, the P, decreased by 42,92%, 50,37%,
55%, and 57,91%, respectively, from the Ploss without
any DG unit. Also, the percentage reduction in Q,  is
39,85%, 49,2%, 52,98%, 54,4%, respectively, from the
0, Without any DG unit.

The results of IEEE 33-Bus system. The single line
diagram of this system is shown in Fig. 10. This system has
total load of 3715 kW and 2300 kvar, the total generation
3917,677 kW and 2435,14 kvar, with the active and reactive

power loss as 202,677 kW and 135,141 kvar, respectively.
While the initial VD is 1,7009 pu.

Case 1: DGs is capable of injecting active power only

In this case, the DG units are only capable of supplying
the network with active power only, i.e., operating at the
unity power factor. Table 5 shows a comparison of the
results of incorporating multiple DGs into this network.
Optimally placing a single DG in the network contributes
48,701% reduction in P, and reduces the VD from
1,7009 pu to 0,8296 pu. When Placing 2 DG at the same
time reduces P, by 57,61% and reduces the VD to
0,6471 pu, while placing 3 DGs at the same time reduces

Table 3
The results of applying multiple DGs to IEEE 30 bus
Item 1DG 2DG 3DG 4DG
DG location 6 7 24 7 21 30 7 19 24 30
DG size, MW 94 58,89 27,09 46,79 34,01 13,22 44,92 18,89 20,49 12,06
0,.» Mvar 19,89 14,604 11,954 10,8117
P, . MW 3,126 2,516 2,032 1,649
P, reduction, % 45,97 56,52 64,88 71,5
0,,, reduction, % 33,17 50,94 59,85 63,67
VD, pu 1,0669 0,8701 0,7045 0,5890
3>5 |_1 DG unit = 2DG units— 3 DG units =4 DG u.nitsl |-o- Base case =~ 1 DG unit == 2DG units == 3 DG units =#=4 DG units
L 1,051 .
§ 3,0
é h = 1,007 T
A =
o 2,5 r N
- &
o & 0,951 i
z G
£200 >
0,901
1 5 | i i | 1 | | 1
) 50 100 150 0 5 10 15 20 25 30
Iteration Bus number
Fig. 6. Convergence characteristics of PSO-NTVAC for DGs integration Fig. 7. Voltage profile with DGs for IEEE 30 bus
in IEEE 30 bus
30 T T T T T
25 T
20 T
=
= 15 T
N—
wn
&
—= 10 T
o)
Z
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Fig. 8. Single line diagram of IEEE 57-bus

Base case | DG unit 2 DG units 3 DG units 4 DG units

Fig. 9. Comparison of P, with DGs for IEEE 57-bus
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Table 4
The results of integrating multiple DGs to the IEEE 57-bus
Item 1DG 2 DG 3DG 4 DG
DG location 13 13 38 13 16 38 13 16 38 53
DG size, MW 261,08 190,08 88,07 146,52 86,24 87,67 131,13 83,79 86,39 22,04
0,., Mvar 73,18 61,82 57,2 55,49
P, . MW 15,905 13,83 12,54 11,73
P, reduction, % 42,92 50,37 55 5791
0,,, reduction, % 39,85 49,2 52,98 54,4
VD, pu 1,1493 1,1207 1,12 1,0975
Table 5
Comparison of results for incorporating multiple DGs units into an IEEE 33-bus for Case 1
Item 1DG 2 DG 3DG 4 DG
DG location 6 13 30 14 24 30 7 14 24 31
DG size, kW 2575,3 846,4 1158,7 754 1099.,4 1071,4 916,2 585,3 980,9 708,5
DG size, kvar 74,79 58,55 49,39 45,39
P, kW 103,97 85,91 71,46 65,94
P, reduction, % 48,7 57,61 64,74 67,47
0, reduction, % 23,1 56,6 63,4 66,4
VD, pu 0,8296 0,6471 0,5873 0,5356
250 T T T T T
noo %] %y BN NN RB 200f 1
B
Y
<150+ :
| £
il I O | I I
| bbbbbbbbbbbbbbb] 10 i
2(3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 &~
! sof 1
19 20 14 2 Base case 1 DG unit 2 DG units 3 DG units 4 DG units

Fig. 10. Single line diagram of IEEE 33-bus

Fig. 11. Comparison of decreased Ploss with an increased number of

DG units for case 1

power loss by 64,74% and reduces the VD to 0,5873
pu and Placing 4 DG at the same time reduces P, by
67,47% and reduces the VD to 0,5356 pu. Fig. 11 describes
the reduction in P, as the number of DG units added to
the network is increased. Fig. 12 shows the convergence
characteristics of PSO-NTVAC with the integration of
DG into the network. Fig. 13 shows the improvement in
the voltage profile compared to the number of DG units.
From these figures, it is clear that the voltage profiles are
improved after the integration of DG units.

Case 2: DGs is capable of injecting active and reactive
power.

In this case the DG units can provide both active
and reactive power to the network. Fig. 14 describes the
reduction in P, as the number of DG units added to the
network is increased. Fig. 15 shows the improvement in the

voltage profile compared to the number of DG units. The
optimal location of DGs, DGs size, P, _, and VD are shown
in Tables 6. From this table, it can be observed that the
P, decreased to 69,72%, 85,94%, 94,26%, and 96,83% by
integrating 1 DG, 2 DG, 3 DG and 4 DG, respectively. In
addition, when one DG unit was added to the system, the
VD was reduced from 1.7009 pu to 0,4777 pu, while when
4 DG units were added, the VD was reduced to 0,0579 pu.

The results of IEEE 69-Bus system. This is a large-
scale radial distribution system with 69 buses and 68
branches. The single line diagram of this system is shown
in Fig.16. The total load of 3802,1 kW and 2694,7 kvar
and the total generation 4027,1 kW and 2796,865 kvar,
with the active and reactive power loss as 225 kW and
102,1648 kvar, respectively. The VD without the integration
of the DGs in the network is 1,8369 pu.
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Fig. 12. Convergence characteristics of PSO-NTVAC for DGs integration
in IEEE 33-bus for case 1
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Fig. 15. Voltage profile with DGs for IEEE 33-bus for case 2
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Table 6
Comparison of results for incorporating multiple dgs units into an IEEE 33 bus for case 2
Item 1 DG 2 DG 3DG 4 DG
DG location 6 13 30 14 24 30 7 14 24 30

DG size, kW 25447 839.4 1140,4 747,5 1078,3 1048,6 795,1 582.,6 966,1 787,2

DG size, kvar 1750,2 395,6 1065,7 350,1 5213 1021,0 380,4 271,0 469,5 893.9
0, kvar 48,3671 20,401 9,692 5,770
P, kW 61,3634 28,4918 11,6299 6,4282
P, reduction, % 69,72 85,94 94,26 96,83
0,,, reduction, % 64,2 84,9 92,83 95,73
VD, pu 0,4777 0,1886 0,1205 0,0579

Case 3: DGs is capable of injecting active power only

In this case, the DGs units can only provide active power
to the network, i.e., operating at the unity power factor.
Table 7 shows a comparison of the results of incorporating
multiple DGs into this network. Optimally placing a
1 DG in the network contributes 63,01% reduction in P,
and reduces the VD from 1,8369 pu to 0,8724 pu. When
Placing 2 DG at the same time reduces P, by 68,14%
and reduces the VD to 0,4997 pu, while placing 3 DGs
at the same time reduces P, by 69,14 % and reduces

the VD to 0,4493 pu and Placing 4 DGs at the same time
reduces P, by 69681% and reduces the VD to 0,4448 pu.
Fig. 17 describes the reduction in P, as the number of
DG units added to the network is increased. Fig. 18 shows
the improvement in the voltage profile compared to the
number of DG units. From this figure, it is clear that the
voltage profiles are improved after the integration of DG
units.

Case 4: DG is capable of injecting active and reactive
power to 69 bus system.
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Table 7
Comparison of results for incorporating multiple DGs units into an IEEE 69 bus for case 3
Item 1DG 2 DG 3DG 4 DG
DG location 61 17 61 11 18 61 11 18 50 61
DG size, kW 1872,7 531,5 1781,5 526,8 380,4 1719,0 526,0 380,4 718,5 1718,8
0, kvar 40,53 35,94 34,96 31,27
P, kW 83,22 71,68 69,43 67,92
P, reduction, % 63,01 68,14 69,14 69,81
0,., reduction, % 60,32 64,82 65,78 69,39
VD, pu 0,8724 0,4997 0,4493 0,44438
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In this case, the DG units can provide both active and
reactive power to the network. Fig. 19 depicts the reduction
in P, as the number of DG units added to the network is
increased. Fig. 20 shows the improvement in the voltage
profile compared to the number of DG units. The optimal
location of DGs, DGs size, P, , Q, , and VD are shown
in Table 8. From this table, it can be observed that the
P, . decreased to 89,7%, 96,79%, 98,1%, and 99,1% by

Bus Number

Fig. 18. Voltage profile with DGs for IEEE 69-bus for case 3

integrating 1 DG, 2 DG, 3 DG, and 4 DG, respectively. In
addition, when 1 DG unit was added to the system, the VD
was reduced from 1,8369 pu to 0,5868 pu, while when 4
DG units were added, the VD was reduced to 0,0518 pu.
Conclusion. In this paper an improved version of
particle swarm optimization (PSO) known as nonlinear
time-varying acceleration coefficients PSO (PSO-NTVAC)
is used to find the optimal placement and size of single
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Fig. 19. Comparison of P, with DGs for IEEE 69-bus for case 4
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Fig. 20. Voltage profile with DGs for IEEE 69-bus for case 4

Table 8
Comparison of results for incorporating multiple DGs units into an IEEE 69 bus for case 4
Item 1DG 2DG 3DG 4DG
DG location 61 17 61 11 18 61 11 18 50 61
DG size, kW 1828,5 5223 1734,7 494.,5 379,1 1674,3 493,6 379,1 718,1 1674,1
DG size, kvar 1300,6 3534 1238,5 353.8 251,5 1195,5 3533 251,5 512,7 1195,3
0, kvar 14,379 8,045 6,759 1,199
P, kW 23,1704 7,2039 4,2676 1,9951
P, . reduction, % 89,7 96,79 98,1 99,1
0, reduction, % 85,93 92,13 93,38 98,82
VD, pu 0,5868 0,1299 0,0645 0,0518

and multiple DG units based on renewable energy source
in power systems. Also, the impact of DGs installation
on power system performance and parameters such as
voltage, active and reactive power loss is investigated.
The main objective of installing DG units is to reduce
the power losses of the radial and meshed networks. The
proposed technique is implemented on five different IEEE
standard bus systems which are IEEE 14 bus, 30 bus, 57
bus, 33 bus, and 69 bus. The results show the applicability
of this technique in various network systems. Also, the
results show clearly a significant reduction in an active and
reactive power loss of the system and the voltage profile
improvement if the optimum bus and value of RDGs are
known proving the advantages of RDGs penetration into
the system.

The researcher [Mamdouh K. Ahmed] is funded by a
scholarship [Ph.D.] under the Joint (Executive Program
between the Arab Republic of Egypt and the Russian
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OnTuMu3anys pacnoaoxKeHns U MOIIHOCTH BO300OHOBISIEMBIX
pacnpeeeHHbIX HCTOYHHUKOB 3HEPIUU C HCIOJIb30BaAHHEM
MOIM(HUIUPOBAHHOTO METOJA POS YACTHIL

AXMEJ] Mamayx Kamaneaaun — accucmenm kagheopul snexkmpomexuuxy, Ynusepcumem Anv-Asxap,
Kaup, Ecunem.

OCMAH Moxamen XaccaH — accucmenm kagheopul snekmpomexnuku, Yuusepcumem Anv-Asxap, Kaup,
Eeunem.

KOPOBKHWH Hukoaaii BaaguMupoBu4 — 00Kmop mexw. HayK, npogeccop evicuiell ukonvl « Bvicoko-
sonbmuas sHepeemuray, Cankm-Ilemepbypeckuti nonumexnuyeckuil ynusepcumem Ilempa Benuko-
20, Canxm-Ilemepoype, Poccus.

[Iponuknogenue 6 snepeocucmemvl 80300HOGIAEMbIX PACHPEOCTEHHBIX UCMOYHUKOS, UCNONb3VIOWUX,
Hanpumep, sHepeuio eempa u(uau) corHyd, 0beuaen MHOICECME0 MEeXHUYECKUX U IKOLOSUYECKUX NPeUMy-
wecms. K HumM 0mHOCAmMcst nogvluienue HadedCHOCMU IHEP2OCUCEMbL, 0DecnedeHe pacmyuux mpebosa-
HULL K 9KOJO2UYHOCU, CHUICEHUE NOMEPL MOWHOCMU U YIyuuleHue npopuis nanpsisicenus. Oonaxo ycma-
HOBKA UCTOYHUKOB PACHPEOELeHHOU 2eHEPAYUL MOICEN NPUBECU U K HE2AMUSHBIM NOCIeOCMBUSIM, eCiu
UX MOWHOCMb U PACROLONCEHUE He onpedeneHbl O0NCHBIM 0bpazom. Tlosmomy Heobxooumo pazeumue me-
MO008 NOUCKA ONMUMATLHBIX PACNOLONCEHUS U MOUWHOCMU IHEP2OYCMAHOBOK PACPEOENIeHHOU 2eHepayuu,
MUHUMUSUPYIOWUX 803MOJICHbIE He2amughble nociedcmeust. [l onpeodenenius MeCmonoi0NCeHus U Mow-
HOCMU UCMOYHUKO8 DACNPEOCNIEeHHOU 2eHepayuy 8 dHEPLOCUCMEMAX UCHONb3YIOMCS KK MPAOUYUOHHbLE
aneopummbvl (IUHENHOe NPOZPAMMUPOBAHUE, 2DAOUSHIMHBLI MEMO0), MAK U COBPEMENHbIE IEPUCTNUYECKUE.
Memoo post yacmuy aensiemcst 00HUM U3 Hauboee PHEKMUSHBIX U WUUPOKO UChOTb3YyemblX. [Ipedrazaemcs
HOBbLIL 6APUAHNT AN2OPUMMA POSL YACUY C HETUHEHLIMU USMEHSTIOWUMUCS, 80 BPEMEHU KOIDPuyuenmamu
yexopernusi (PSO-NTVAC) ons pewenus 3a0auu onpeodeneHus OnmumMaibHO20 MeCmonoa0iCeHust U MOUWHO-
CMU HECKONLKUX IHEP2OYCMAHOBOK 0I5l CeMYamulx u paouaivhulx cemeil. OcHo8HAs yenb paccmampusae-
MOl 30044y ONMUMUZAYUL COCHOUM 8 MUHUMU3AYUU 0OUUX NOMEPb AKMUBSHOU MOWHOCMU CUCTEMbL NPU
VOO0BIEeMBOPEHUU BCEX IKCNIYAMAYUOHHBIX o2panudenuil. [Ipednosicennas memoodonocus anpobuposana c
ucnonvzosanuem mecmogvix cxem IEEE, cooepoicawux 14, 30, 57, 33 u 69 wun, npu koruvecmaee d1uepeoy-
cmarno6ox, usmensiiougemcst om 1 0o 4. Pesynomam doxasvieaem Ooiee 8blCOKYIO 8 CPAGHEHUU C AHATI02AMU
agppexmusnocme npeonodxcennou moougurxayuu PSO-NTVAC ons pewenusi 3a0a4 onmumaisHo20 pasme-
WeHUST HECKONIbKUX IHEP2OYCIAHOB0K PACAPEOENeHHOU 2eHEPaAYUU U b100PA UX MOUHOCTIU C YeTbI0 MUHU-
MU3AYUU NOMEPb MOUHOCTU 8 IHEP2OCUCHIeMe.

KnrmueBBle ciloB a: chudxcerue nomepo mowHocmu, yayuuernuas PSO-NTVAC, cemuamvie u pa-
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ouanvHvle cemu, onmumdaibroe pasmenieHue
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