Conceptual Analysis of Superconducting Hydroelectric Homopolar Generators for Aluminium Smelters and Large Hydrogen Electrolysers

Authors

  • Arkadiy Matsekh

DOI:

https://doi.org/10.24160/0013-5380-2025-10-4-14

Keywords:

homopolar machines, large-scale applications, electrolytic production, aluminium, liquid hydrogen, motors, generators, superconducting magnets

Abstract

A hydraulic turbine-driven superconducting homopolar generator, equipped with high-speed and high-current liquid metal current collectors, presents a practical solution for direct current supply to aluminium smelters and hydrogen electrolysers. This technology eliminates the need for conventional AC generator-transformer-rectifier systems while providing ripple-free high-current DC power. The combination of liquid metal current collectors capable of routinely handling continuous currents of 250 kA, NbTi field coils, and high-speed prime movers such as Francis or Pelton turbines enables generator power levels of 20–100 MW. Hydroelectric plants which are historically often located in close proximity from aluminium smelters – major consumers of DC power – provide an ideal platform for implementing large-scale superconducting generators due to their substantial power output and established infrastructure. Beyond improved system efficiency – marginal, but economically significant – this approach enables the development of integrated superconducting infrastructure through high-temperature superconducting (HTS) power cables replacing conventional massive current-carrying busbars. Recent developments in superconducting cable technology, including the DEMO 200 (200 kA) project, demonstrate the viability of such integration. The proposed solution utilises exclusively mature technologies with abundant supply chains, allowing for rapid deployment at industrial scale. This approach creates a realistic and economically viable pathway for implementing practical superconducting systems in the power sector while significantly improving system efficiency of electrolytic aluminium and hydrogen production. This paper is not a comprehensive design study, but represents an attempt at a critical engineering analysis of the application and a proposed solution with a review of the inventory of available enabling technologies.

Author Biography

Arkadiy Matsekh

(Foucault Dynamics, Gold Coast, Australia) – PhD, Chief Scientist, Director; arkadiy@foucaultdynamics.com.au

References

1. Kermeli K. et al. Energy Efficiency Improvement and GHG Abatement in the Global Production of Primary Aluminium. – Energy Efficiency, 2015, vol. 8, pp. 629–666, DOI: 10.1007/s12053-014-9301-7.
2. International Energy Agency, Steel and Aluminium Net Zero Emissions Guide [Электрон. ресурс], URL: https://www.iea.org/reports/steel-and-aluminium (дата обращения 17.08.2025).
3. Krasnoyarsk Aluminium Smelter [Электрон. ресурс], URL: https://rusal.ru/en/about/geography/krasnoyarskiy-alyuminievyy-zavod (дата обращения 17.08.2025).
4. Bratsk Aluminium Smelter [Электрон. ресурс], URL: https://rusal.ru/en/about/geography/bratskiy-alyuminievyy-zavod (дата обращения 17.08.2025).
5. Sayanogorsk Aluminium Smelter [Электрон. ресурс], URL: https://rusal.ru/en/about/geography/sayanogorskiy-alyuminievyy-zavod (дата обращения 17.08.2025).
6. Hydro Sunndal [Электрон. ресурс], URL: https://www.hydro.com/en/global/about-hydro/hydro-worldwide/europe/norway/sunndal (дата обращения 17.08.2025).
7. Fjarðaál Aluminum Smelter [Электрон. ресурс], URL: https://www.bechtel.com/projects/fjardaal-aluminum-smelter (дата обращения 17.08.2025).
8. Rio Tinto Saguenay–Lac-Saint-Jean [Электрон. ресурс], URL: https://www.riotinto.com/en/operations/canada/saguenay (дата обращения 17.08.2025).
9. Rio Tinto NZAS [Электрон. ресурс], URL: https://nzas.co.nz (дата обращения 17.08.2025).
10. Aqueveque P.E. et al. On the Efficiency and Reliability of High-Currents Rectifiers. – IEEE Industry Applications Conf. Forty-First IAS Annual Meeting, 2006, DOI: 10.1109/IAS.2006.256697.
11. Rodriguez J.R. et al. Large Current Rectifiers: State of the Art and Future Trends. – IEEE Transactions on Industrial Electronics, 2005, vol. 52, No. 3, pp. 738–746, DOI: 10.1109/TIE.2005.843949.
12. IEA Outlook for key energy transition minerals – Copper [Электрон. ресурс], URL: https://www.iea.org/reports/copper (дата обращения 17.08.2025).
13. CODELCO December 2024 results [Электрон. ресурс], URL: https://www.codelco.com/sites/site/docs/20240426/20240426181050/operational_and_financial_report_december_31_2024.pdf (дата обращения 17.08.2025).
14. Norilsk Nickel Annual Report [Электрон. ресурс], URL: https://ar2024.nornickel.com (дата обращения 17.08.2025).
15. Glencore Canada – What we do – Copper [Электрон. ресурс], URL: https://www.glencore.ca/en/what-we-do/copper (дата обращения 17.08.2025).
16. Elschner S. et al. DEMO200 – Concept and Design of a Superconducting 200 kA DC Busbar Demonstrator for Application in an Aluminum Smelter. – IEEE Transactions on Applied Superconductivity, 2022, vol. 32, No. 4, DOI: 10.1109/TASC.2022.3152987.
17. Matsekh A. Handbook of Superconductivity: Characterization and Applications, Vol. III, Chapter H1.12: Homopolar Motors. Boca Raton, U.S.A.: CRC Press, 2022, 10 p.
18. McDonald K.T. Is Faraday’s Disk Dynamo a Flux-Rule Exception? Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (July 27, 2019; updated March 31, 2020).
19. Guala-Valverde J. et al. The Homopolar Motor: A True Relativistic Engine. – American Journal of Physics, 2002, vol. 70, pp. 1052–1055, DOI: 10.1119/1.1498857.
20. Pat. US 8288910 B1. Multi-Winding Homopolar Electric Machine/ C.W. Van Neste, 2012.
21. Суханов Л.А., Сафиуллина Р.Х., Бобков Ю.А. Электрические униполярные машины. М.: ВНИИЭМ, 1964, 136 с.
22. Kalsi S. et al. Homopolar Superconducting AC Machines, with HTS Dynamo Driven Field Coils, for Aerospace Applications. – IOP Conf. Series: Materials Science and Engineering, 2020, vol. 756, No. 1, DOI: 10.1088/1757-899X/756/1/012028.
23. Wang S. et al. Rotor Design of HTS Homopolar Inductor Alternator Based on Multi-Physics Field. – Int. Conf. on Power System Technology, 2021, pp. 2451–2458, DOI: 10.1109/POWERCON53785.2021.9697485.
24. Ma J. et al. Design of a 10 kW Superconducting Homopolar Inductor Machine Based on HTS REBCO Magnet. – IEEE Transactions on Applied Superconductivity, 2024, vol. 34, No. 5, DOI: 10.1109/TASC.2023.3345289.
25. Fair R. et al. Development of an HTS Hydroelectric Power Generator for the Hirschaid Power Station. – J. of Physics: Conf. Series, 9th European Conf. on Applied Superconductivity, 2010, vol. 234, DOI: 10.1088/1742-6596/234/3/032008.
26. Hydro Review, Superconductor Technology Makes Hydropo-wer Debut [Электрон. ресурс], URL: https://www.hydroreview.com/world-regions/europe/superconductor-technology (Accessed on 20.09.2025).
27. Markus Bauer et al. HTS Field Coils with Robust Design for a Superconducting Wind Turbine Generator, Presentation MT-25 Conf. 2017.
28. Bergen A. et al. Design and in-Field Testing of the World’s First ReBCO Rotor for a 3.6 MW Wind Generator. – Superconductor Science and Technology, 2019, vol 32, 2019, DOI: 10.1088/1361-6668/ab48d6.
29. Koponen J. et al. Effect of Power Quality on the Design of Proton Exchange Membrane Water Electrolysis Systems. – Applied Energy, 2020, vol. 279, DOI: 10.1016/j.apenergy.2020.115791.
30. Cooley L.D., Ghosh A.K., Scanlan R.M. Costs of High-Field Superconducting Strands for Particle Accelerators Magnets. – Superconductor Science and Technology, 2005, vol. 18, No. 4, DOI: 10.1088/0953-2048/18/4/R01.
31. International Hydropower Association, 2024 World Hydropower Outlook – Opportunities to Advance Net Zero [Электрон. ресурс], URL: https://www.hydropower.org/publications/2024-world-hydropower-outlook (дата обращения 20.09.2025).
32. Irena. Renewable Energy Technologies: Cost Analysis Series, Vol. 1: Power Sector, iss. 3/5. Hydropower June 2012, 44 p.
33. Raadal H.L. et al. Life Cycle Greenhouse Gas (GHG) Emissions from the Generation of Wind and Hydro Power. – Renewable and Sustainable Energy Reviews, 2011, vol. 15, pp. 3417–3422, DOI: 10.1016/j.rser.2011.05.001.
34. Xu R. et al. A Global-Scale Framework for Hydropower Development Incorporating Strict Environmental Constraints. – Nature Water, 2023, No. 1, pp. 113–122, DOI: 10.1038/s44221-022-00004-1.
35. Sternberg R. Hydropower: Dimensions of Social and Environmental Coexistence. – Renewable and Sustainable Energy Reviews, 2008, vol. 12, pp 1588–1621, DOI: 10.1016/j.rser.2007.01.027.
36. Abrahamsen A.B. et al. Large Superconducting Wind Turbine Generators. – Energy Procedia, 2012, vol. 24, pp. 60–67, DOI: 10.1016/j.egypro.2012.06.087.
37. Song X. et al. Design Study of Fully Superconducting Wind Turbine Generators. – IEEE Transactions on Applied Superconductivity, 2015, vol 25, No. 3, DOI: 10.1109/TASC.2015.2396682.
38. Stauntner W. et al. Cryogenic Aspects of a 20 MW Class Low-Temperature Superconducting Generator for the Renewables Industry. – IOP Conf. Series: Materials Science and Engineering, 2024, vol. 1301, DOI: 10.1088/1757-899X/1301/1/012048.
39. Iliev I., Trivedi C., Dahlhaug O.G. Variable-Speed Operation of Francis Turbines: A Review of the Perspectives and Challenges. – Renewable and Sustainable Energy Reviews, 2019, vol. 103, pp. 109–121, DOI: 10.1016/j.rser.2018.12.033.
40. Shrestha U., Choi Y. A CFD-Based Shape Design Optimization Process of Fixed Flow Passages in a Francis Hydro Turbine. – Processes, 2020, vol. 8, DOI: 10.3390/pr8111392.
41. Maw T.T., Mya N.S., Khaing C.C. Design and Analysis of 30 MW Pelton Turbine. – International Journal of Scientific Engineering and Technology Research, 2019, vol. 8, pp 452–457.
42. 150,000 Continuous D-C Amperes Easy for Acyclic Generator, Power Engineering, 1962.
43. Fuger R. et al. A Superconducting Homopolar Motor and Generator – New Approaches. – Superconducting Science and Technology, 2016, vol 29, DOI: 10.1088/0953-2048/29/3/034001.
44. Wilson M.N. Superconducting Magnets. Oxford: Clarendon Press, 1987, 335 p.
45. Giger U., Pagani P., Trepp C. The Low Temperature Plant for the Big European Bubble Chamber BEBC. – Cryogenics, 1971, vol. 11, No. 6, pp. 451–455, DOI: 10.1016/0011-2275(71)90269-4.
46. Green M.A. The Development of Superconducting Detector Magnets From 1965 to the Present. – IEEE Transactions on Applied Superconductivity, 2007, vol. 27, No. 4, DOI: 10.1109/TASC.2016.2634522.
47. Mitchell N. et al. The ITER Magnets: Design and Construction Status. – IEEE Transactions on Applied Superconductivity, 2012, vol. 22, No. 3, DOI: 10.1109/TASC.2011.2174560.
48. Lim B. et al. Design of ITER PF Coils. – IEEE Transactions on Applied Superconductivity, 2011, vol. 21, No. 3, pp 1918–1921, DOI: 10.1109/TASC.2010.2092732.
49. Parizh M., Sautner W. Handbook of Superconductivity: Characterization and Applications, vol. III, Ch. H1.3: MRI Magnets. Boca Raton, U.S.A.: CRC Press, 2022, 56 p.
50. Allais A. et al. SuperRail–World-First HTS Cable to be Installed on a Railway Network in France. – IEEE Transactions on Applied Superconductivity, 2024, vol. 34, No. 3, DOI: 10.1109/TASC.2024.3356450.
#
1. Kermeli K. et al. Energy Efficiency Improvement and GHG Abatement in the Global Production of Primary Aluminium. – Energy Efficiency, 2015, vol. 8, pp. 629–666, DOI: 10.1007/s12053-014-9301-7.
2. International Energy Agency, Steel and Aluminium Net Zero Emissions Guide [Electron. resource], URL: https://www.iea.org/reports/steel-and-aluminium (Accessed on 17.08.2025).
3. Krasnoyarsk Aluminium Smelter [Electron. resource], URL: https://rusal.ru/en/about/geography/krasnoyarskiy-alyuminievyy-zavod (Accessed on 17.08.2025).
4. Bratsk Aluminium Smelter [Electron. resource], URL: https://rusal.ru/en/about/geography/bratskiy-alyuminievyy-zavod (Accessed on 17.08.2025).
5. Sayanogorsk Aluminium Smelter [Electron. resource], URL: https://rusal.ru/en/about/geography/sayanogorskiy-alyuminievyy-zavod (Accessed on 17.08.2025).
6. Hydro Sunndal [Electron. resource], URL: https://www.hydro.com/en/global/about-hydro/hydro-worldwide/europe/norway/sunndal (Accessed on 17.08.2025).
7. Fjarðaál Aluminum Smelter [Electron. resource], URL: https://www.bechtel.com/projects/fjardaal-aluminum-smelter (Accessed on 17.08.2025).
8. Rio Tinto Saguenay–Lac-Saint-Jean [Electron. resource], URL: https://www.riotinto.com/en/operations/canada/saguenay (Accessed on 17.08.2025).
9. Rio Tinto NZAS [Electron. resource], URL: https://nzas.co.nz (Accessed on 17.08.2025).
10. Aqueveque P.E. et al. On the Efficiency and Reliability of High-Currents Rectifiers. – IEEE Industry Applications Conf. Forty-First IAS Annual Meeting, 2006, DOI: 10.1109/IAS.2006.256697.
11. Rodriguez J.R. et al. Large Current Rectifiers: State of the Art and Future Trends. – IEEE Transactions on Industrial Electronics, 2005, vol. 52, No. 3, pp. 738–746, DOI: 10.1109/TIE.2005.843949.
12. IEA Outlook for key energy transition minerals - Copper [Electron. resource], URL: https://www.iea.org/reports/copper (Accessed on 17.08.2025).
13. CODELCO December 2024 results [Electron. resource], URL: https://www.codelco.com/sites/site/docs/20240426/20240426181050/operational_and_financial_report_december_31_2024.pdf (Accessed on 17.08.2025).
14. Norilsk Nickel Annual Report [Electron. resource], URL: https://ar2024.nornickel.com (Accessed on 17.08.2025).
15. Glencore Canada – What we do – Copper [Electron. resource], URL: https://www.glencore.ca/en/what-we-do/copper (Accessed on 17.08.2025).
16. Elschner S. et al. DEMO200 – Concept and Design of a Superconducting 200 kA DC Busbar Demonstrator for Application in an Aluminum Smelter. – IEEE Transactions on Applied Superconductivity, 2022, vol. 32, No. 4, DOI: 10.1109/TASC.2022.3152987.
17. Matsekh A. Handbook of Superconductivity: Characterization and Applications, vol. III, Ch. H1.12: Homopolar Motors. Boca Raton, U.S.A.: CRC Press, 2022, 10 p.
18. McDonald K.T. Is Faraday’s Disk Dynamo a Flux-Rule Exception? Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (July 27, 2019; updated March 31, 2020).
19. Guala-Valverde J. et al. The Homopolar Motor: A True Relativistic Engine. – American Journal of Physics, 2002, vol. 70, pp. 1052–1055, DOI: 10.1119/1.1498857.
20. Pat. US 8288910 B1. Multi-Winding Homopolar Electric Machine/ C.W. Van Neste, 2012.
21. Suhanov L.A., Safiullina R.H., Bobkov Yu.A. Elektricheskie unipolyarnye mashiny (Electric Unipolar Machines). M.: VNIIEM, 1964, 136 p.
22. Kalsi S. et al. Homopolar Superconducting AC Machines, with HTS Dynamo Driven Field Coils, for Aerospace Applications. – IOP Conf. Series: Materials Science and Engineering, 2020, vol. 756, No. 1, DOI: 10.1088/1757-899X/756/1/012028.
23. Wang S. et al. Rotor Design of HTS Homopolar Inductor Alternator Based on Multi-Physics Field. – Int. Conf. on Power System Technology, 2021, pp. 2451–2458, DOI: 10.1109/POWERCON53785. 2021.9697485.
24. Ma J. et al. Design of a 10 kW Superconducting Homopolar Inductor Machine Based on HTS REBCO Magnet. – IEEE Transactions on Applied Superconductivity, 2024, vol. 34, No. 5, DOI: 10.1109/TASC.2023.3345289.
25. Fair R. et al. Development of an HTS Hydroelectric Power Generator for the Hirschaid Power Station. – J. of Physics: Conf. Series, 9th European Conf. on Applied Superconductivity, 2010, vol. 234, DOI: 10.1088/1742-6596/234/3/032008.
26. Hydro Review, Superconductor Technology Makes Hydropower Debut [Electron. resource], URL: https://www.hydroreview.com/world-regions/europe/superconductor-technology (Accessed on 20.09.2025).
27. Markus Bauer et al. HTS Field Coils with Robust Design for a Superconducting Wind Turbine Generator, Presentation MT-25 Conf. 2017.
28. Bergen A. et al. Design and in-Field Testing of the World’s First ReBCO Rotor for a 3.6 MW Wind Generator. – Superconductor Science and Technology, 2019, vol 32, 2019, DOI: 10.1088/1361-6668/ab48d6.
29. Koponen J. et al. Effect of Power Quality on the Design of Proton Exchange Membrane Water Electrolysis Systems. – Applied Energy, 2020, vol. 279, DOI: 10.1016/j.apenergy.2020.115791.
30. Cooley L.D., Ghosh A.K., Scanlan R.M. Costs of High-Field Superconducting Strands for Particle Accelerators Magnets. – Superconductor Science and Technology, 2005, vol. 18, No. 4, DOI: 10.1088/0953-2048/18/4/R01.
31. International Hydropower Association, 2024 World Hydro-power Outlook – Opportunities to Advance Net Zero [Electron. resource], URL: https://www.hydropower.org/publications/2024-world-hydropower-outlook (Accessed on 20.09.2025).
32. Irena. Renewable Energy Technologies: Cost Analysis Series, Vol. 1: Power Sector, iss. 3/5. Hydropower June 2012, 44 p.
33. Raadal H.L. et al. Life Cycle Greenhouse Gas (GHG) Emissions from the Generation of Wind and Hydro Power. – Renewable and Sustainable Energy Reviews, 2011, vol. 15, pp. 3417–3422, DOI: 10.1016/j.rser.2011.05.001.
34. Xu R. et al. A Global-Scale Framework for Hydropower Development Incorporating Strict Environmental Constraints. – Nature Water, 2023, No. 1, pp. 113–122, DOI: 10.1038/s44221-022-00004-1.
35. Sternberg R. Hydropower: Dimensions of Social and Environmental Coexistence. – Renewable and Sustainable Energy Reviews, 2008, vol. 12, pp 1588–1621, DOI: 10.1016/j.rser.2007.01.027.
36. Abrahamsen A.B. et al. Large Superconducting Wind Turbine Generators. – Energy Procedia, 2012, vol. 24, pp. 60–67, DOI: 10.1016/j.egypro.2012.06.087.
37. Song X. et al. Design Study of Fully Superconducting Wind Turbine Generators. – IEEE Transactions on Applied Superconductivity, 2015, vol 25, No. 3, DOI: 10.1109/TASC.2015.2396682.
38. Stauntner W. et al. Cryogenic Aspects of a 20 MW Class Low-Temperature Superconducting Generator for the Renewables Industry. – IOP Conf. Series: Materials Science and Engineering, 2024, vol. 1301, DOI: 10.1088/1757-899X/1301/1/012048.
39. Iliev I., Trivedi C., Dahlhaug O.G. Variable-Speed Operation of Francis Turbines: A Review of the Perspectives and Challenges. – Renewable and Sustainable Energy Reviews, 2019, vol. 103, pp. 109–121, DOI: 10.1016/j.rser.2018.12.033.
40. Shrestha U., Choi Y. A CFD-Based Shape Design Optimization Process of Fixed Flow Passages in a Francis Hydro Turbine. – Processes, 2020, vol. 8, DOI: 10.3390/pr8111392.
41. Maw T.T., Mya N.S., Khaing C.C. Design and Analysis of 30 MW Pelton Turbine. – International Journal of Scientific Engineering and Technology Research, 2019, vol. 8, pp 452–457.
42. 150,000 Continuous D-C Amperes Easy for Acyclic Generator, Power Engineering, 1962.
43. Fuger R. et al. A Superconducting Homopolar Motor and Generator – New Approaches. – Superconducting Science and Technology, 2016, vol 29, DOI: 10.1088/0953-2048/29/3/034001.
44. Wilson M.N. Superconducting Magnets. Oxford: Clarendon Press, 1987, 335 p.
45. Giger U., Pagani P., Trepp C. The Low Temperature Plant for the Big European Bubble Chamber BEBC. – Cryogenics, 1971, vol. 11, No. 6, pp. 451–455, DOI: 10.1016/0011-2275(71)90269-4.
46. Green M.A. The Development of Superconducting Detector Magnets From 1965 to the Present. – IEEE Transactions on Applied Superconductivity, 2007, vol. 27, No. 4, DOI: 10.1109/TASC.2016.2634522.
47. Mitchell N. et al. The ITER Magnets: Design and Construction Status. – IEEE Transactions on Applied Superconductivity, 2012, vol. 22, No. 3, DOI: 10.1109/TASC.2011.2174560.
48. Lim B. et al. Design of ITER PF Coils. – IEEE Transactions on Applied Superconductivity, 2011, vol. 21, No. 3, pp 1918–1921, DOI: 10.1109/TASC.2010.2092732.
49. Parizh M., Sautner W. Handbook of Superconductivity: Characterization and Applications, vol. III, Ch. H1.3: MRI Magnets. Boca Raton, U.S.A.: CRC Press, 2022, 56 p.
50. Allais A. et al. SuperRail–World-First HTS Cable to be Installed on a Railway Network in France. – IEEE Transactions on Applied Superconductivity, 2024, vol. 34, No. 3, DOI: 10.1109/TASC.2024.3356450

Published

2025-09-18

Issue

Section

Article